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ABSTRACT 

We are using geometric/optical canopy reflectance modeling and spatial/spectral pattern 

recognition to study the form and structure of savanna in West Africa. We are testing an inverti- 

ble plant canopy reflectance model for its ability to  estimate the amount of woody vegetation 

cover in areas of sparsely wooded grassland from remotely sensed data. 

Dry woodlands and wooded grasslands, commonly referred to as savannas, are important 

ecologically and economically in Africa, and cover approximately forty percent of the continent 

by some estimates. The Sahelian and Sudanian savanna make up the important and sensitive 

transition zone between the tropical forests and the arid Saharan region. The depletion of woody 

cover, which is used for fodder and fuel in these regions, has become a very severe problem for the 

people living there. We are using Landsat Thematic Mapper (TM) data t o  stratify woodland and 

wooded grassland into areas of relatively homogeneous canopy cover, and then applying an inver- 

tible forest canopy reflectance model to estimate directly the height and spacing of the trees in 

the stands. Since height and spacing are proportional to biomass in some cases, a successful 

application of the segmentation/modeling techniques will allow direct estimation of woody 

biomass, as well as cover density, over significant areas of these valuable and sensitive ecosystems. 

Sahelian savanna sites in the Gourma area of Mali being used by the NASA/GIMMS project 

(Global Inventory Modeling and Monitoring System, at Goddard Space Flight Center), in con- 

junction with CIPEA/Mali (Centre International pour 1’Elevage en Afrique) will be used for test- 

ing the canopy model. The model will also be tested in a Sudanian zone crop/woodland area in 

the Region of Se‘gou, Mali. 
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1. INTRODUCTION 
About noon we saw at a distance the capital of Kaarta, situated in the middle of an 
open plain - the country for two miles around being cleared of wood by the great 
consumption of that  article for building and fuel ...[ February 11, 179G] (Park 1893) 

The need for accurate baseline data on the type and condition of landcover for large areas 

of the earth has been recognized by many leading scientists (NASA 1983, Houghton e t  al. 1983, 

Woodwell 1984). Terrestrial biota greatly affect the climate, energy budget, hydrologic cycle and 

biogeochemistry of the Earth, and are in turn affected by these processes. Quantifying the effects 

of human impact on the biosphere requires a greatly improved understanding of the influence of 

human-induced changes in land cover (such as deforestation, “desertification,” and conversion of 

land to agricultural and urban uses) on the spatial and temporal dynamics of terrestrial vegeta- 

tion. This understanding may in turn help resource planners improve land use practices in areas 

where degradation of range and farmland and loss of fuelwood contributes to problems of starva- 

tion and disease. 

Global land-cover information is traditionally derived from small-scale vegetation maps and 

FA0 statistics, and more recently from satellite imagery (Tucker et  al. 1985, Justice et  al. 1985, 

Matthews 1983). These estimates vary considerably, due to lack of consistency between data 

sources, particula,rly concerning classification and methodology (Ajtay et  al. 1979, Matthews 

1983). The accurate assessment of land cover and biophysical parameters of woody vegetation, 

such as productivity, biomass, albedo, canopy height (surface roughness), surface temperature, 

and evapotranspiration, are important for determining the relationship between the land surface 

and the atmosphere and for driving models of climate, energy balance and biogeochemical cycling 

(Botkin et a/. 1984, Hobbie et al. 1984). 

-1- 
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Degradation of arid and semi-arid ecosystems has accelerated in recent years due to  

increased human use for fuel and food production, coupled with climatic fluctuation. Degradation 

is defined as a reduction in perennial phytomass and ecosystem productivity, elimination of woody 

cover, soil exposure, compaction, and erosion, and loss of stored nutrients and carbon (Dregne 

1983, Petrov 197G, Vinogradov 1980, Reining 1978, and Hare 1983). This has occurred in sub- 

Saharan Africa, particularly the Sahel, in the last two decades. Mungo Park’s remarks about the 

kingdom of Se‘gu (now Mali) in the quote that opens this section show that this is not a new prob- 

lem (Park 1893), but  now, for the first time in history, drought and famine are international 

media events. 

Several feedback mechanisms for prolonging droughts and accelerating land degradation 

have been proposed which involve land cover change. Because rain is primarily of convective ori- 

gin in the tropics and subtropics, the source of the water either being the ground itself or a neigh- 

boring ocean, once a drought begins, the vegetation dies, reducing evapotranspiration and convec- 

tive rainfall even further. Another feedback model states that the loss of vegetation causes 

increased surface albedo, drastically changing the energy balance of the surface, resulting in 

further drying (Charney 1975). However, in many parts of the Sahel zone the surface albedo 

again decreased after the drought period in the early 1970’s (Ram01 e t  al. 1982), implying that a 

runaway process of perpetuating the drought through increased surface albedo did not occur. 

Changes in evapotranspiration may be a more significant factor in perpetuating droughts (Rasool 

1983). Therefore, changes in the amount of woody vegetation should be examined. 

In the development of remote sensing techniques for vegetation assessment, the spectral 

vegetation indices and transforms that have been applied successfully to estimate vegetation 

amount in agricultural and grassland ecosystems do not work as well in forests and semi-arid 

woodlands, bush, and shrublands, because the bulk of the biomass is not green biomass but in the 

woody structures. Absorption and shadowing by woody parts and the amount of bare soil visible 

has a complicated effect on greenness measures. Thus, i t  is important t o  account for the ecosys- 

tem architecture. Further, the information classes in remotely sensed scenes of arborescent 

. 
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1andsca.pes are composed of spectral mixtures of objects (such as trees, shrubs, grass, and soil) and 

form a mosaic at the scale of satellite sensor resolution. 

We are testing a geometric/optical canopy reflectance model which exploits the canopy 

geometry in an inversion technique to predict tree height and density. This model is applied in a 

savanna ecosystem, an ecosystem of great importance in terms of global ecology and human utili- 

zation. Our approach is: 

- spatial pattern analysis of imagery, 

- image stratification into woodland stands of homogeneous density, and 

- application of the canopy model within woodland stands. 

-3- 
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2. BACKGROUND 

The main methods used for measuring vegetation amount, form, and structure from 

remotely sensed data are (1) spectral pattern recognition, including clustering, classification and 

labeling (Franklin e t  al. 198G), and (2) establishing correlative relationships between vegetation 

characteristics and satellite reflectance data. In spectral pattern recognition and image 

classification (Haralick and Fu 1983), cover classes are identified, and vegetation characteristics 

are associated with the classes through stratified sampling and measurement. Inference of vegeta- 

tion parameters (biomass, chlorophyll absorption, moisture content, color and spectral signature) 

from remotely sensed data is discussed by Jensen (1983) and Curran (1980). In brief, the estima- 

tion of such parameters by correlation with band ratios and/or linear transforms usually relies on 

the contrast between the visible absorption and infrared reflectance of green vegetation. Woody 

vegetation amount (tree or shrub cover), where vegetation cover is incomplete (particularly in 

semi-arid and arid environments) is more strongly related to spectral brightness than any other 

spectral transform (Colwell 1981, Olsson 1984 and 1985, Logan and Strahler 1982, Pech e t  ai. 

198G). This effect has been modeled by Otterman (1984 and 1985). 

Another method of inference in remote sensing is proportion estimation, treating the 

reflectance of a pixel as a linear composite of the reflectance of scene components weighted by 

their relative area within the pixel. This method has been used to estimate vegetation amount in 

canopies with incomplete cover (Richardson et  al. 1975, Jackson e t  al. 1979, Heimes and Smith 

1977, Graetz and Gentle 1983, Pech et  al. 1986). 

2.1. Plant Canopy Reflectance Modeling 

In contrast to pattern recognition, where scene elements are mapped into information classes 

based on their radiance measures, or spectral indices, where a biophysical parameter is related 

empirically to (transformed) spectral data, in reflectance modeling reflectance is predicted as a 

function of the physical and optical properties of the scene elements. Plant canopy reflectance 

modeling will be defined as one way of treating mathematically the interaction of electromagnetic 

-4- 
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radiation with “scene elements”, where the scene element is a leaf (sub-element) or canopy 

(aggregate). The approaches used are radiative transfer theory in the visible and near-infrared 

wavelengths and the the energy balance equation in the thermal regime. The goal in plant 

canopy modeling is to predict the optical reflectance or emission as a function of intrinsic biophy- 

sical properties of the scene elements. If the canopy model can be inverted, then canopy charac- 

teristics can be inferred from measured reflectance. This is analogous to the technique used by 

atmospheric scientists who deduce profiles of properties (temperature, aerosols, etc.) from inter- 

grated radiance measures. 

Strahler e t  al. (1986) and Smith (1983) review canopy modeling from a remote sensing 

viewpoint; the plant stand is being viewed by a sensor measuring electromagnetic radiation, and 

the signal received at the sensor is a function of the intrinsic properties of the target (the plant 

stand) and the other elements in the scene (such as atmosphere, soil, shadowing as a function of 

sun-sensor-surface geometry, and stand density and homogeneity). The problem in reflectance 

modeling is separating reflectance due to intrinsic properties of the plant stand from extrinsic pro- 

perties due to varying irradiance, or atmosphere. 

Ross (1981) also discusses the modeling of plant stands. His treatment is founded in a Rus- 

sian tradition of agronomic research which applies phytometry (the large scale estimation of stand 

architecture) to model the radiation and water regime in a crop canopy. This is done to link the 

biophysical attributes of the plant stand to its productivity. This agronomic perspective has been 

paralleled in England and the U.S. by Montieth (1982) and Gates (1980). Ross (1981) states: 
If statistical phytometry is t o  be developed further, one-dimensional plane-parallel 
models of canopy reflectance must be abandoned and the stand treated statistically as 
a population of individual plants. 

Similarly, Smith (1983, p. 87) concludes: 
[Blecause of the large random component in radiation modeling, tractable models will 
include a statistical component. . . .When significant spatial variation occurs in the 
horizontal direction such that plane-parallel approximations to the scattering and 
emmissive terrain elements are no longer valid. . .the three-dimensional structure of 
terrain elements becomes important and leads to the casting of distinct shadows 
resulting from the macrostructure and morphology of the elements. For vegetation 
targets a merging of radiative transfer theory and geometric optics is evident. 

-5- 
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The model that  we will apply treats the stand statistically as a population of individual plants, 

and uses geometric optics to predict the shadowing from the plant canopy. 

2.2. Inversion of Canopy Models 

Canopy models can use two sources of information for inversion; angular variation in 

response, and covariance statistics of estimated mixtures across pixels (Smith 1983). Goel et  al. 

(1984), Goel and Thomas (1984a and b) and Goel and Strebel (1983) show how numerical non- 

linear optimization techniques can be used to invert the Suits (1972) or SAILS (Verhoef and Bun- 

nick 197G) type model to obtain leaf area from directional reflectance measurements if the other 

parameters of the model are known (solar and viewing zenith, azimuth between solar and viewing 

direction, leaf inclination distribution, leaf hemispherical reflectance and transmittance, soil 

hemispherical reflectance, and fraction of incident diffused light). Goel and Deering (1985) do the 

same thing but  predict five of the model parameters through inversion, holding only soil hemis- 

pherical reflectance and skylight constant. The success of inversion is limited by how well the 

model actually predicts reflectance for a given canopy (runs in the forward direction). In the 

papers cited above the inversion underestimates leaf area in the infrared wavelengths (the model 

overestimates reflectance) at low sun angle and for sparse canopies, because the model doesn’t 

account for shadowing. 

Inversion of these models in a remote sensing situation may not be practical because one 

either has to measure complete heniispherical reflectance (not very practical even from a multi- 

look angle sensor because of the number of measurements needed), or estimate spectral parame- 

ters, which are dependent on cover type and soil background (even among agricultural types), and 

diffuse light, which depends on atmospheric conditions. This technique couldn’t be used unless 

the cover type and estimations of these parameters were already known, but could be useful in an 

agricultural monitoring scenario (Jackson 1984). 

The plane-parallel models have been important in understanding radiative transfer in vege- 

tation canopies, especially in describing the bidirectional reflectance distribution function (BRDF) 
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of the canopy given certain properties of leaf area, angle and azimuth distribution, leaf and soil 

BRDF, and so forth. However, these models do not account for variation in reflectance as a func- 

tion of spatially heterogeneous vegetation cover. If prediction of scene properties is the goal, 

these models do not adequately bridge the gap to  the pattern recognition (indirect inference) tech- 

niques. The models which employ geometric optics better describe actual canopies, both agricul- 

tural and natural, because they incorporate canopy geometry and treat biological populations sta- 

tistically. 

The geometric-optical models use the second information source, covariance statistics of 

estimated mixtures across pixels, for inversion. This is more practical in a satellite remote sensing 

situation, but still there are several scene and canopy parameters that  must be measured or 

estimated. 

2.3. Li-Strahler Canopy Models 

Li and Strahler (1985) (see also Li 1981, Li 1983) developed a series of invertible, determinis- 

tic canopy reflectance models for sparse pine forest (i. e., forest with a discontinuous canopy). 

These models are invertible because parameters of tree height and density can be directly calcu- 

lated from remotely sensed reflectance values, given appropriate ground calibration. The models 

are essentially geometric in character, treating trees as solid objects on a contrasting background, 

and estimates the proportion of each pixel in green canopy, shadow, and understory. In the sim- 

p le  canopy model the following assumptions are made: 

(1) 
(2) 

a pine crown is a simple cone with fixed base/height ratio; 
the crown, although conical in slmpe, can be modeled as a flat 
Lambertian reflector which absorbs visible wavelengths 
differentially (i.e., is green); 
tree heights are lognormally distributed with a fixed mean and vari- 
ance and a known coefficient of variation; 
tree counts from pixel to pixel vary as a Poisson distribution func- 
tion with a fixed density of individuals per unitlarea; 
the ground surface underlying the forest canopy (e. g., understory) 
has a signature which is distinctly different from that of tree crowns 
and shadow; and 

(3) 

(4) 

(5) 

-7- 
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(6) illumination is from a point source at infinite distance and at a 
known angle from the zenith. 

Assumption 4 was later modified because a Neyman type A (double Poisson) model was shown to  

fit better the distribution of tree counts in 80 m quadrats (corresponding to MSS pixels) inter- 

preted from aerial photographs. 

The simple model can be thought of as including two steps. First is “proportion estima- 

tion,” or calculating the proportions of understory, illuminated crown area, and shadow in each 

pixel. Because these proportions are a direct function of the number and size of trees that appear 

in a pixel (providing that neither the crowns intersect nor shadows overlap), they can be used to  

calculate a dimensionless parameter, NR 2, for each pixel, where R is the square of the average 

cone radius and N is the density of cones per unit area. The second step requires calculating the 

mean and variance of NR2 values for all pixels within a stand, and using these values to  estimate 

the mean height and spacing parameters for lognormal and Poisson/Neyman Type A models. 

Because inversion of the model to obtain tree height and spacing requires calculation of interpixel 

variance, a homogeneous timber stand of certain minimal area (perhaps twenty pixels) is needed. 

This version of the Li-Strahler model is referred to as the “simple variance-dependent model.” 

Using this model, Li and Strahler estimated height and density parameters to within 10 per- 

cent of values obtained from air photos for pine stands in northern California, U.S.A. The accu- 

racy of the simple variance-dependent model is limited by the overlapping of crowns and shadows, 

which becomes significant when canopy cover reaches a level of about 30 to 40 percent, depending 

on the shape of the trees and their angle of illumination. A modified overlapping model accounts 

for overlapping of shadows and intersection of crowns as density increases and trees are spaced 

increasingly close to  each other, and can be inverted accurately for stands of up to 75% or greater 

crown closure, if the trees are not too small (Li and Strahler 1985). 

-8- 
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2.3.1. Simple Variance-Dependent Model 

To reiterate, in the simple variance-dependent model the reflectance of a pixel is modeled as 

a linear combination of scene components weighted by relative areas. Pixels from an area of 

homogeneous tree cover can be taken as replicate measurements of reflectance. Interpixel vari- 

ance in reflectance comes from three sources: 

- 
- 
- 

variations in the number of trees among pixels 
variation in tree size within and between pixels 
chance overlap of crown and shadow within a pixel. 

The assumptions of the simple model, modified to  fit the savanna tree form, are: 
- tree shape can be approximated by a simple shape, a semisphere on a stick, or some other 

iorm (see Figure ij, 
tree shape is uniform (independent of size), and size and density are uncorrelated, 
size is described by a known distribution function, and even if the mean is not known, the 
coefficient of variation (CV, standard deviation divided by mean) is known, 
spatial pattern (distribution of the number of trees per pixel) can be described by a distribu- 
tion function (e.g. Poisson, double Poisson) so that, again, even if the mean density is not 
known, the CV is (or the CD, coefficient of determination, variance divided by mean). 

- 
- 

- 

The sensor model associated with the simple canopy model is based on the following 

assumptions: 
- the output of the sensor is a digital image, consisting of brightness values averaged over the 

spatial extent of each grid cell, 
the sensor is multi-spectral, and 
the sensor is sufficiently for from the ground that view angle can be considered vertical and 
uniform over the imaged area. 

- 
- 

2.3.2. Geometry of the Model 

Figure 1 shown the geometry of a semisphere on a stick illuminated at angle 8. The radius 

of the semisphere is r , and h is the height to the base of the crown. Let r 2  be the square of the 

crown radius. Let 7 = tan-'(h / r  ). The illuminated crown, shadowed crown and shadowed 

ground projected to the sensor will have areas: 

Crown: T o  - r - ( l  + cos0) 
2 

-9- 
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- r  I F 2  (1 -cod)  Shadowed Crown: 
3 

If h tan8>2r 

Shadowed Background: 

1 E r 2 ( 1  + (large sun angle or tall narrow trees) 
2 

or if h tanf?<3r 

Shadowed Background: 

) - 2r2( t  - % sin') ) (sm~j! +ijn angle or short wide trees) 1 E,-"(: + - 
3 case 

htane - cos-ltane 
2r %any 

where t = cos-'- - 

In the original formulation, Li (1981) treated shadowed crown and background as one component, 

with a single signature, and the area calculated from tree geometry. 

n 

i =1 
We will define r as the geometric factor, such that r ri is the area of the pixel covered 

by tree and shadow. Therefore, 

IF 1 IF 1 
2 cos L cos r = IF + -(I + -e) or, r = K + ,(I + -e) - 2r2 ( t+  sin2t)  

2.3.3. Variables and Notation 

Variables Associated with Tree Crowns: 

Radius of crown as semisphere, lognormally distributed. 
Height t o  base of crown, lognormally distributed. Crown height, H = r + h . 
Equal to h / r  . Assumed constant within a stand. 
Coefficient of variation (ratio of standard deviation to  mean) for heights. 
Coefficient of variation of radius. If cr is fixed, then ch = c, since r is a linear function 
of h. 

Variables Associated with a Pixel: 

-10- 
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A 
n 

R 

m 

Pixel size. Usually taken as having a unit area. 
Number of trees in a pixel, distributed as a Poisson; independent of other variables. 

Average of squared crown radii within the pixel, i.e., R 2=- 

Dimensionless. Ratio of sum of squared crown radii t o  area of pixel, which is 

l n  
ni-1 

r 2i . 

Note that m is a dimensionless parameter reflecting both the size and density of trees. 

The larger tn , the larger or denser the trees. This is scaled by the geometric factor, I?, t o  get the 

proportion of pixel in canopy, shadow and background. 

3) 
N 

c d  

Variables Associated with the Timber Stand: 
Mean of n for all pixels. For the fully random model, this is the value of the Poisson 
parameter. 
Dispersion coefficient (variance-to-mean ratio) of n . That is, 0, = v ( n  ) / N  . If n is 
distributed as a Poisson function, Cd X l .  If not, c d  will depend on the pixel size, A . 
For the clumped or patchy distributions that characterize large quadrats in natural 
forests, cd will increase with A . 

H Population mean of h . 
E ( r  ) Population mean of r . 
V ( r  ) Population variance of r . V ( r  ) = C, 2(E2(r  ))2 . 
E ( r 2 )  Population mean of r 2  . 
V (  r ') Population variance of r . 

If r is lognormally distributed, then r is also lognormally distributed. We can then show from 

the definitions of E and V that  

E ( r 2 )  = ( l + C t 2 ) E ( r ) 2 ,  

and 

V ( r 2 )  = w [ ~ ( r ' ) ] ~  , 

where 

= (I+c, 214 - 1. 

R2 Mean value of R 2  for all pixels. i.e., E ( R 2 )  . 

-11- 
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R 
V ( R 2 )  Variance of R2. 

The square root of R2 , Le., d m .  

If n is a constant and r is randomly distributed in the spatial domain, then R2 E ( r  '). Also, 

R 2  is a sample mean, and thus V(R2)  = V ( r 2 ) / n .  

M 
V ( m  ) Variance of m . 

Mean of nt for all pixels in the stand. 

2.3.4. Reflectance of an Individual Pixel 

As stated above, we model the reflectance of the pixel as an area-weighted sum of the 

reflectances of the four spectral scene components. 

Areas and Proportions: Next are variables describing areas or proportions for scene com- 

ponents. 

Area of illuminated background within the pixel. 
Area of illuminated crown within a pixel. 
Area of shadowed background within a pixel. 
Area of shadowed crown within a pixel. 
=Ag / A  Proportion of pixel not covered by crown or shadow. 
=A, / ( A  -Ag ) Proportion of area covered by crown and shadow that is in illuminated 
crown. 
=At / ( A  -A4g ) Proportion of covered area in shadowed crown. 
=A, /(A - A g )  Proportion of covered area in shadowed background. 

From the tree geometry described above, we can show that 

7r A, 171 -(1 +  COS^) 
2 

7r At 171 y(1 -  COS^) 
d 

T 1 A, = 171 -(1 + -) if h tan0 < 2R 
2 case 

or 

7r 1 
2 cos 

A, = n z  -(1 + -0) - 2r2(t-JI sin 2 t )  if h tan8 > 2R 

-12- 
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A, + A t  + A ,  = m r  

and 

A, = 1 - m r .  

2) Reflectance Vectors: These are average single channel reflectances or multispectral 

reflectance vectors. 

G 
C 
Z 
T 
S 

Reflectance vector for a unit area of illuminated background (constant). 
Reflectance of a unit area of illuminated crown (constant). 
Reflectance of a unit area of shadowed background (corisiaiii). 
Reflectance of a unit area of shadowed crown (constant). 
Reflectance of a pixel. Variable; depends on number and size of trees in pixel. 

The signature of pixel i in band i (for single channel, drop the subscript i) is 

3) Geometric Relationships: From the geometry of the semisphere, we have the following rela- 

tions if the pixel is taken to have a unit area: 

7r 1 Kz = (-(1 + -))/r 
2 case 

7r Kt = (-(I - cOse))/r 
2 

-13- 
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Equation (1) can be formulated: 

Since Ke , I(, , and ICt sum to one, the expression (Kc -C + IC, .Z + Kt *T) represents a point in 

multispectral space lying within a triangle with vertices at C , 2 , and T (see Figure 2). This 

point is Xo ; the average reflectance of a tree and its associated shadow. The only variable in the 

right side of (2) is thus Kg , which is a linear function of nt . When m varies, S will vary along a 

straight line connecting points G and Xo.  

Note that as overlapping of trees and shadows occurs, the background is obscurred and sha- 

dows falling on other crowns will be foreshortened. Therefore, the reflectance of a pixel that  is all 

tree and shadow, X,, will lie on line TC , its position depending of tree geometry and sun angle. 

Substituting the geometric expressions above for Kc , I(, , and Kt into ( 2 )  yields 

S = G -Gm r+Xont r . 

Rearranging, we have 

mI'(G-X,) = ( G - S )  

In the  last expression, G -S and G -Xo are vector differences; however, G -S lies on the line 

G -Xo and therefore the equation is actually scalar. Using the notation 1 GS to indicate the 

length of the vector connecting G and S , we have 

(3) 

If there were no error in the signal, the m value determined in any band would be the same, but 

noise will be present in S , a, and the component signatures. Two averaging procedures can be 

used; the weighted average of m values for all bands, or the weighted average of the final esti- 

mates of height and spacing. In the single band case, the outliers will inflate the variance more, 

making the trees appear bigger. 

-14- 
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The sensativity of this model to noise in S a.nd the component signatures, and to errors in 

estimation of parameters can be shown by taking the partial derivative of ni with respect to 

these variables. Rearranging and expanding (3) we get 

and from this, 

(because when cover is low, S ==: G ) 

S - G  - d 171 -- 
d r  r2(G - X,) r (9) 

Because ( G  - Xo) is in the denominator, when the spectral contract between background and tree 

is high, sensativity to noise in S , G and X o  will be reduced. When density is low ( m  is small), 

noise or error in estimating ,Yo and r are less important than the contrast between tree and back- 

ground ( G  - *Yo), because m is in t h e  nui i ic ra tor .  

2.3.5. Inverting the Model using the Variance of ni 

Assume that a timber stand consists of I< pixels, i =1, . . . , I<. From (2), we can obtain a 

value of m for each pixel. Then, the values of m will have a mean and a variance within the 

timber stand: 
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Let us now assume that height (and thus r ) is independent of density. Thus, expressions for the 

mean and variance of independent products will apply: 

M = E ( n R 2 )  = E ( n ) .  E ( r 2 )  = N R 2 ,  

and 

V ( m )  = V ( n R 2 )  = (R2)* V ( n )  + N 2 V ( R 2 )  + V ( n ) V ( R 2 ) .  

Because n is a Poisson function, 

V ( n )  = N . 

Further, 

v ( R ~ )  = V ( r 2 ) / n  x v ( r 2 ) / ~  = w ( E ( ~ ~ ) ) ' / N  . 

Substituting (12) and (13) into (ll), we finally obtain: 

V ( m )  x (N + WN + w ) ( R ~ ) ~  = ( M  + WM + wR2)R2. 

In order to  derive (14), R2 and V ( R 2 ) ,  which are parametric terms, are approximated using the 

sample mean and variance of r 2 .  Small errors are introduced by these approximations, but they 

may be ignored for our purposes. Solving (14) for R2, we obtain: 

(15) 
R -  2 - j ( 1 + w ) 2 M 2 + 4 V ( n t ) w ] e - ( 1 +  w ) M  

2w 

Thus, given sample estimates of the mean and variance of M determined from the 

reflectances of pixels in the stand, we can solve for R2, and then for N , yielding the average size 

and density of trees in the stand. The assumption underlying the use of the sample variance of r 2  

as V ( R 2 )  is that  each pixel is an independent sample of values of r 2 .  Other approximations can 

be also applied to (11). For example, if the interpixel variation of r 2  is more significant than 

intrapixel variation, we may use V ( R 2 )  directly as an approximation of V(r ' ) .  Then (14) 
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V(tn ) = (1 + w )MR2 + wM2 

R2 = V ( t n  ) - wM2 
( l + w ) M  * 

Also, if the dispersion coefficient of n is significantly different from 1, we may use 

Then (15) becomes: 

v(n 

The choices basically depend upon what a‘ priori information we have (Li and Strahler 1985). 
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3. STUDYAREA 

3.1. The Savanna Biome 

The study is being conducted in the Sahelian and Sudanian zone savannas of West Africa. 

Dry woodlands and wooded savanna (with tree cover greater than 10%) are presently estimated to 

cover 48G.4 million ha or 22.2% of the continent of Africa, including 8.6 million ha in Mali (Lan- 

ley and Clement 1982). Savanna will be defined as the subtropical and tropical vegetation forma- 

tions where the grass stratum is continuous and important, occasionally interrupted by trees and 

shrubs (cover greater than 10% and less than SO%), where fire occurs, and where the growth is 

closely associated with alternating wet and dry seasons. The savanna forms the broad transition 

between closed tropical forest and open desertic steppes (BourliZre and Hadley 1983). 

Because of the difficulties in estimating changes in savanna and dry woodland area using 

available monitoring techniques, the most authoritative study declines to estimate changes in 

these categories (Lanley and Clement 1982). However, the rate of conversion to  other vegetation 

types by clearing for agriculture, grazing, burning and fuelwood harvesting appears t o  be very 

high. For example, in Tanzania, miombo and other dry woodlands in populated areas are being 

harvested more rapidly than they can regenerate (Allen 1983). The problem in drier savanna in 

the Sahel may be even more severe (Delwaulle 1973). 

The balance between woody and herbaceous plants, and the effects of various factors on this 

balance is one of the most interesting aspects of the dynamics of savanna ecosystems (BourliZre 

and Hadley 1983, Lebrun 1955). Walker and Noy-Meir (1982) have proposed a model of savanna 

structure based on the idea of dynamic equilibrium, which assumes that the strata compete for 

topsoil water, and an increase in tree leaf biomass must be balanced by a decrease in herbaceous 

biomass (shown empirically in the Saliel by Breman 1982). Although the strata are in competi- 

tion for soil moisture, the woody strata also create favorable microhabitat for herbaceous growth. 

The recovery of herbaceous vegetation after the 1972-73 drought in the Sahel was quicker where 

woody vegetation was present (Bernhardt-Reversat 1977). Walker and Noy-hlleir conclude that 

-18- 



Annual Report NASA Award NAGW-788 

savanna is perturbed by climatic shifts, fire, grazing, and fuelwood consumption, which is 

reflected in the changes in relative proportions of grass and trees. However, theories on the 

mechanisms controlling savanna structure are hotly debated (Menaut 1983). The savanna struc- 

ture, particularly the proportion of woody cover, is an important indicator of environmental con- 

ditions. Our canopy model will provide a method for measuring woody cover over large areas. 

3.2. Savanna Vegetation of West Africa 

The rainfall gradient is very steep in tropical and sub-tropical West Africa, about 1 mm/km 

latitude, and the rainy season is unimodal. The savanna bioclimatic regions are referred to  as the 

Sahelian and Sudanian zones. This region is a vast plain, interrupted by some escarpments and 

massifs, but mostly composed of eroded sedimentary material and Pleistocene fossil dune systems. 

The plain is often internally drained into small depressions, and throughout the region there is an 

impermeable (often ferricrete) layer at varying depth and of varying thickness. These features 

control the local distribution of vegetation. 

Sahel is an Arabic word meaning shoreline, and refers to the southern boundary of the 

Sahara desert. The Sahelian zone corresponds roughly to the 200-400 mm annual precipitation 

zone, and is further subdivided into: 

Saharo-Sahelian transition 100-200 mm 

Sahel proper 200-400 mm 

Sudano-Sahelian transition 400-600 mm 

by Chevallier (1900), Aubre'ville (1949), Boudet (1975), Le Houerou (1980), Penning de Vries an 

Djiteye (1982), and Breman and de Wit  (1983). The rainy season varies from 1.5 mos in the north 

to  3.5 in the south, from 20 rain days to  GO, and the mean annual precipitation coefficient of vari- 

ation ranges from 40 % to 25% (Tucker e t  al. 1985). The vegetation of the Sahel ranges from an 

open annual grassland (Panicum turgidum, Cenchrus bifiorus), with less than 10% woody cover 

dominated by spiny trees and shrubs (Acacia raddiana, Balanites aegyptica, Zityphus 
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mauritanica), in the north to perennial grasses with 25% or more tree cover (including Combreta- 

ceae - Combretum, Terminalia) in the south. The northern limit of the Sahel is sometimes 

defined by the absence of the grass Cenchrus bijTorus (“kram-kram))). Basal area ranges from 4- 

16 m2/ha for the tree layer (Rutherford 1982), and annual production by woody plants of leaves, 

stems and twigs is 80-300 kg/ha/yr (Le Houerou 1980). The latitudinal trend in density of woody 

cover is modulated by topographic position and soil type (affecting moisture availability). For 

example, A c a c i a  nilotica and A. seyal are locally dominant and dense in low, flooded areas, 

Euphorbia balsamijera is dominant in the northern Sahel where the impermeable ferricrust is close 

to  the surface, and shallow gravelly slopes have a unique floristic association (the “Brousse 

tigr,”). 

Leaf biomass can be predicted from stem circumference, tree height, or crown diameter 

(R2 

and crown closure were shown to be proportional to  mean annual rainfall and inversely propor- 

tional to herb cover (Cisse‘ and Breman 1982). A study in the Sudan showed a strong correlation 

(R=.94) between woody biomass and crown diameter (Olsson 1984). Since the canopy model 

predicts average crown size and density, this bodes well for using the model to estimate biomass. 

.80-.9G) (Cisse‘ 1980a and b, Bille 1980). In the Sahel, green leaf biomass of woody species, 

Phenology of trees and grasses is highly variable, and dependent of species and morphologi- 

cal differences, the presence of deep soil water, and so forth. However, many woody plants in the 

Sahel leaf at the end of the wet season, greening up as much as three months after the peak of 

herbaceous productivity (for example, Acac ia  senegal, Commiphora ajricana, Combretum 

micranthum, Euphorbia balsamijera, Guiera senegalensis and Zizyphus mauritiana; Poupon and 

Bille 1974). Other species have the opposite pattern, greening in the late dry season before the 

rains. 

The Sudanian zone is the region to  the south of the Sahel, lying between about 1l0 and 13’ 

N in West Africa, where the rainfall is GOO to  1000 mm, the rainy season lasts 4 to  5 months, and 

there is permanent agriculture. The vegetation is a mosaic of open woodland savanna, up to  

about 15 m tall, some closed woodland, and edaphic bush thickets and grasslands on ferricrete 
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and inundated soils. Dominant woody species include Vitellaria paradoxa, Acacia albida, Albizia 

chevallieri, Prosopis africana, Cassia seiberiana, Adansonia digitata and Parkia biglobosa. The 

northern limit of the Sudanian zone is marked by the disappearance of Vitillaria paradoxa (“kar- 

ite’”), and Adansonia digitata (baobab) (Schnell 1977). This zone has been cultivated for a long 

time, with areas near villages under permanent cultivation, and bush fallowing practiced in fields 

further away. The crop/woodland or “orchard bush” type of vegetation is formed when crops are 

grown under a woodland of useful trees which are preserved when the land is cleared (Nielsen 

1965). 

All of these characteristics (open tree canopy, herbaceous understory, simple basal area/- 

biomass relationship, woodland of continuously varying density, but complex spatial mosaic of 

physiognomic types) indicate that the stratification approach and the Strahler-Li canopy model 

will be applicable to this area, and provide a method for assessing woodland structure, and detectr 

ing and quantifying woody cover. 

3.3. Sahelian Sites in Mali 

A study is being conducted in the Gourma area of Mali by the Centre International pour 

1’Elevage en Afrique (CIPEA) (Pierre Hiernaux, Principal Investigator), in collaboration with the 

GIMMS (Global Inventory, Monitoring and Modeling System) Project at NASA/Goddard Space 

Flight Center. CIPEA has located thirty sites of 1 km radius along a north-south transect from 

near Douna in the south (14’ 40‘ N, 1’ 35‘ W, 500 mm annual ppt.), to  Gourma-Rharous on the 

Niger River in the north (17’ 45‘ N, lo 50‘ W, 350 mm annual ppt.). These sites were chosen to 

be of relatively homogeneous vegetation and substrate (according to  tone and texture on air p h e  

tos) over and area of at least 1 /mi2, for an AVHRR study (Hiernaux and Justice 1986). 

In the first year we are testing the canopy model in CIPEA Sites 15 (near Gossi), 20 and 31 

(near Hombori - see Figure 3). Site 15 is located in an Acacia nilotica woodland (approximately 

30 percent cover), with an understory of predominantly Echinochloa colonna on an alluvial plain 

of poorly drained vertisols. Part  of this stand can remain flooded throughout the dry season 
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(Hiernaux et  al. 1984). Site 20 is located in an Acacia seyal woodland (approximately 57% cover), 

with 47 percent herbaceous cover (Echinochloa, Sporobolis helvolis, and Corchorus tridens), also 

on an alluvial plain of vertisols, that  is inundated during the rainy season, but more freely 

drained that Site 15 (Hiernaux et  al. 1984). Site 21 is very similar t o  Site 20, with woody cover 

approximately 44 percent, predominantly Acacia seyal (personal observation and P. Hiernaux 

1985 , unpublished data). 

3.4. Sudanian Si tes  in M a l i  

The Sudanian test sites are in the Region of Se'gou, between Tamani and Konodimini 

(Go 50' W and Go 20' W) and the Niger River and Nango (13' 25' N and 13' 10' N). This area 

is being used by R. Cole (Department of Geography, Michigan State University), in his study of 

the changes in land use practices in response t o  the drought since the early 1970's. Rainfed crops 

are grown during the two to three month growing season under a canopy of preserved trees 

(predominantly Vitellaria paradoxa, Acacia albida, Adansonia digitata, Ficus sp., Tamarindus 

indica, and Parkia biglobosa). In November 1985 measurements were taken at four sites in the 

Region of Se'gou (Figure 4). Sites 1 and 2 are dominated by Vitellaria paradoxa, and are located 

southwest and east of Konodimini respectively, in the house fields (cultivated areas near the vil- 

lage where shrubs and weeds are cleared regularly). Sites 3 and 4 are dominated by Acacia albida, 

and are located in the house fields surrounding the villages of Massala and Dugufe'. Acacia albida 

has a characteristic distribution pattern in this area. It was planted in antiquity, and is preserved 

near villages. It dominates within a distance of 0.5 km of the village perimeter with crops grown 

beneath. Beyond that distance, karite' dominates where there is cultivation. 
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4. METHODS 

4.1. Pattern Analysis 

The purpose of pattern analysis is t o  to explore the temporal and spatial patterns of the 

imagery and the ground scene in order to guide the choice of stratification techniques. Recent 

work (Woodcock and Strahler 1983, Woodcock 1986) shows that spatial pattern in multi-spectral 

scanner imagery is dependent on scale, and the spatial characteristics of the scene elements within 

a particular information class or cover type. Two-dimensional variograms will be calculated (see 

Woodcock 198G) for test areas of different known vegetation types in the image data. The 

expected result is a description of the spatial variance of tones in the images, which will indicate 

the relative scales of pattern, and provide a basis for choosing an appropriate texture measure, or 

describing the image context function, for possible use in the segmentation step. 

Many researchers have attempted to understand and describe the pattern of vegetation in 

the woodland/grassland/shrubland complex of west Africa and there is no simple deterministic 

model of the spatial and temporal distribution of vegetation in this or any area with a long and 

complex land use history. However, i t  may be possible to include information about vegetation 

spatial pattern in the information extraction process, at least empirically. 

4.2. Image Stratif ication 

The purpose of image stratification (or segmentation) is to identify areas of woodland in the 

image, and stratify the area into woodland stands of some minimum area which are of relatively 

homogeneous density. This task has been successfully accomplished in prior research (Franklin et  

al. 1985, Strahler et  al. 1983) by using MSS, image texture and digital terrain data, carrying out 

unsupervised classification, then subsequently performing spatial filtering to  produce spatially 

homogeneous stands. 

For the present study terrain data will not be used. I t  is not available, and would be margi- 

nally useful in this environment for discriminating vegetation types. We will use two-date TM 
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imagery (one wet season and one dry season image), and possibly a texture image (Zhan 1986) as 

input t o  unsupervised classification. Principal components images, either from each date, or both 

dates combined, could be used to  reduce the number of data channels used in classification. We 

anticipate that with two-date, well-registered images, the cover types can be discriminated spec- 

trally, possibly with the help of a texture measure. The classification will be evaluated using 

standard accuracy assessment procedures for thematic maps (Rosenfeld e t  al. 1982, Card 1982), 

and by the ability of the stratification to reduce variance in cover estimates or basal area within 

woodland strata. 

An alternative approach is to use a per-field (Latty and Hoffer 1981) or contextual (Tilton e t  

al. 1983) classification technique that incorporates spatial information into the classification step. 

Contextual classification will probably not be useful in this environment because the cover classes 

do not have simple, deterministic, invariant spatial patterns. 

In their current research activities, Li and Strahler are exploring the feasibility of modifying 

the canopy model so that i t  can be applied to each pixel using a moving window. However, this 

approach assumes that the Poisson parameter is stationary within the window, and is therefore 

suitable only for forests or woodlands without abrupt vegetation boundaries. This simplifies the 

stratification problem to identifying areas of more or less continuous woodland within which the 

moving window can be applied, so that  a simple edge detection algorithm could be used for image 

segmentation. The moving-window extension would thus make the model more powerful and 

flexible in a natural environment where woody cover density is continuously varying. If their 

extension is successful, a moving-window approach will be used. Otherwise, the variance depen- 

dent model will be applied to a stratified image. 

4.3. Canopy Reflectance Modeling 

The tree cover in savanna wooded grassland is sufficiently sparse that the overlapping of 

shadows and crowns should not be a significant problem and the simple variance dependent model 

can be applied. The following assumptions must be modified from those presently used in the 
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Strahler-Li model: 

tree shape: A semisphere on a stick, inverted cone, or disc on a stick model for tree shape 

will be appropriate for Sahelian and Sudanian savannas. None of these shapes poses a 

significant problem for incorporation into the invertible model -- they simply modify the 

estimated proportions of green canopy, dark shadow, and understory in a pixel. Li and 

Strahler have extended the model for these shapes (Figure 1). The ratio of height to crown 

diameter will be established from test data. 

height distribution: Field measurement of height distribution, will be very important in the 

SahPlinn 2nd Siidnninn zones where extensive measurements of these parameters do not exist. 

spatial distribution: Our earlier research (Strahler and Li 1981, Franklin 1983) has shown 

that it is possible to estimate the spacing parameters of the model from medium-scale air 

pho ta .  The ability to  describe spatial pattern from air photos in Mali must also be verified 

by field measurements of pattern. 

component spectral signatures: Sensativity analysis of the Li-Strahler model shows that 

the larger the difference between the Background and Tree-Shadow signatures, the stabler the 

results. If a projection can be chosen in spectral space which maximizes spectral separability 

of the components, this will minimize error. Also, as each tree has a bigger impact (as the 

sun angle, and therefore the amount of shadow increases) the results are more stable. When 

trees are small or sparse, the above factors are more important than noise in the tree signa- 

ture, or in the shape parameter. This makes intuitive sense - when the amount of “tree- 

ness” in the pixel is low, the model is more sensative to variations in the background signal 

than the tree signal. 

Therefore, the natural variability of the tree population in terms of shape and 

spectral properties, will not cause significant errors on the model results, but variations in the 

background signature will. A projection can be chosen in spectral space which minimizes 

variations in background signature. Because of variations in the background, i t  may be 

difficult t o  characterize the Tree/Shadow signature with training data. We will use several 
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training fields with different backgrounds and known tree density, and take an average spec- 

tral signature. 

(5) tree size and density for test stands: In order to verify model results, tree size and den- 

sity will be sampled in test stands. 

4.4. Work in Progress 

Image and Collateral Data 

Thematic Mapper data for the study areas have been acquired. Geometrically corrected P- 

Tapes were purchased from EOSAT. For the Gourma test sites a scene was chosen from the late 

part of the growing seaSon (9 September 1984). The scene is #5019209552, WRS Path 195, Row 

49 (Quadrant 3), which includes the sites from north of Gossi to south of Hombori (Sites 14 t o  21 

and 31, see Figure 3). This date was chosen because i t  coincided with CIPEA field data collec- 

tion. However, this scene is not optimal for discriminating trees from herbaceous understory, 

because there were several September rainfall events in 1984, and in  this image the herbaceous 

vegetation is still green in the wetter sites (e.g., Site 15) and in some areas of the dunes. There- 

fore, a late dry season image (7 May 1985) h a s  been ordered, t o  use for multi-date stratification, 

and for testing the canopy model in contrasting seasons. For the Region of Se‘gou, a post- 

harvest, early dry season image (17 November 1984) was acquired (Scene #5026110142, Path 198, 

Row 51). 

Topographic maps at several scales (1:200,000 and 1:1,000,000) were acquired for both the 

Gourma and S6gou sites. Black and white aerial photographs are available for the Republic of 

Mali at a scale of 1:GO,OOO, but they date from 195G. These are the only small-scale photographs 

available in the Gourma area, and will be required for image registration, location of study sites, 

strata labeling, and so forth. Therefore, partial coverage for the Gourma area was acquired. In 

the Region of Se‘gou, 1:50,000 black and white panchromatic photos from 1974 are available for 

part of the region due to the presence of “Projet Riz” (an extensive irrigation project for rice 
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growing) in this area. These photos have been purchased. Current (1985-1986) low-level color air 

photos (1:2500 to 15000 scale) for some of the study sites in both regions were made available to  

us by CIPEA. All of these maps and photo data sources will be used for locating study sites, 

model parameterization (calculating tree spatial pattern and measuring density and cover for sam- 

ple stands to be used in accuracy assessment), image registration (to help interpret from satellite 

imagery to topographic maps) and strata labeling during the image stratification step. 

Field Data Collection 

In the Gourma sites the ClPEA team has estimated woody cover by the line intercept 

method, and estimated tree height, circumference, and crown area for the trees intercepted by the 

one kilometer transect. We have received the tree cover and dimensional data from CIPEA so 

that the distribution of tree sizes can be established for the sites, and cover estimates can be used 

to verify model results. Also, in an earlier study (Cisse' 198Ob) stratified (by diameter class) sam- 

ples of several dominant Sahelian woody plants were measured to establish the dimensional rela- 

tionships among height, stem diameter and crown diameter. These data were used t o  establish 

the shape parameter (a) for the model. 

In the Se'gou region, four 50 to 60 m radius plots were located in each of the four sample 

stands. Diameter a t  breast height (dbh) of each tree, and height and shape parameters for a sub- 

sample of the trees (16 trees per plot) were measured. From these measurements the shape 

parameter and the size distribution for the stands were estimated. 

Analysis of Aerial Photographs 

Using the low altitude CIPEA photographs of the training sites, we have mapped tree point 

pattern in two Gourma and two Se'gou sites. In 280 x 280 m, 250 x 250 m or 140 x 140 m qua- 

drats 200 to 900 trees per quadrat were located. Spatial pattern has been analyzed using quadrat 

analysis (Li and Strahler 1981; Franklin et al. 1985, from Grieg-Smith 1964 and Pielou 1977), and 

second order analysis of inter-tree distances (Franklin and Getis 1985, Getis and Franklin 1986). 
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We have also sampled density and tree cover for the quadrats by the dot grid method (Warren 

and Dunford 1983), t o  asses  the accuracy of the model. 

Image Processing 

Registration and Subimage Selection: The Thematic Mapper da ta  were registered to a map 

base using about 30 control points per quarter scene, and the DIMS software at NASA Goddard. 

TM P-Tapes are geometrically corrected, and we probably did not improve on the geometric 

accuracy of the data using 1:200,000 top0 maps, ephemeral streams as control points and nearest 

neighbor resampling. Therefore, we have decided to use the un-registered data for testing the 

model, and use the derived polynomial transforms for registering the stratified image if necessary. 

Principal Components Images: Principal components images were produced for each subimage 

separately from six T M  spectral bands (not including the thermal channel because of the lower 

spatial resolution). Principal components images can be used as input t o  image stratification and 

canopy model testing (see below). 

Image Stratification: The method used for image stratification is unsupervised clustering, 

classification, and cluster labeling. A small test area (256 x 256 pixels) was chosen in each subim- 

age, and classification and clustering were performed both on principal components (PC) images 

and TM spectral bands. Spectral classes were inspected to  determine if TM or PC images better 

discriminated the land cover classes in these areas. 

Stand and Component Signatures: The mean and variance of the reflectance in each spectral 

band were computed for the test sites (these make up the vector S). The spectral signatures of 

the model components must also be calculated. Background signature can be assigned from train- 

ing sites. Tree plus associated shadow signature can be estimated in two ways. For sites where 

there are cover measures in plots that  can be located in the image, spectral brightness will be 

regressed against cover, and extrapolate to 100 percent cover. For the other sites, unsupervised 

spectral clustering of the spectral data within the site will be performed, assuming that the “dark- 

est” class has the cover density measure by C P E A .  The co-spectral plot of red and near infrared 
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reflectance (or greenness and brightness) will be inspected, and we will assume that brightness 

decreases and greenness increases linearly with cover. 

Testing the Model 

Model inversion will be tested for single and multiple spectral bands (or transformed spec- 

tral da ta  - principal components). The parameters needed to  calculate t o  test the simple model 

are the component signatures, G and X o ,  the shape parameter CY (= r / h  ), and C V ( R 2 ) .  The 

cosine of the solar zenith angle was calculated for each image based on the date and local time of 

the overpass, and the latitude and longitude of the scene center, using a program written by Jeff 

Dozier. The simple model will be tested using programs written by Li Xiaowen. 

We will test the model for two spatial scales, by resampling TM data  to  MSS resolution. 

The model is most cost-effective when applied at the coarsest resolution for which i t  produces rea- 

sonably accurate results. Franklin (1983) has shown that stand density varies more as spatial 

resolution increases. This may make model inversion more difficult, by making it harder to 

characterize the spatial pattern of the trees with a simple statistical model. However, Strahler 

and Li (1981) were able to successfully apply the model in their small test area using a two- 

parameter (double Poisson) model of tree spatial pattern, at 80 m MSS resolution. 
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5. RESULTS 

5.1. Canopy Model 

5.1.1. Tree Shape and Allometry 

The tree shape parameter for a semisphere model, a(= h / r  , the ratio of stem height t o  

crown width), was calculated empirically from sample data for each study site, and from other 

other studies, for five tree species (Tables 1 and 2). In this study each of these species dominated 

in the sites where they were found, making up over 80% of the crown cover. The shape parame- 

ter varies from 0.5 t o  1.7, with most values falling between 0.7 and 1.5. From this shape parame- 

ter and the sun angle at the time of the Landsat overpass, r was calculated for input t o  the sim- 

ple model (Table 3). 

Table 4 shows the allometric relationships among crown radius (or diameter, or surface 

area), stem diameter (or circumference) and height. The R 2  values for the stratified (by size 

class) samples (from Cisse' 1980 b) are improved over the values for the larger random samples 

(from Hiernaux et al. 1984 and this study) but are more representative of the predictive power of 

these relationships. The stratified sample more closely approximates a Model I regression (see 

Sokal and Rohlf 1969), where the independent variable is under investigator control. 

5.1.2. Tree Size Distribution 

Histograms of each of the sample populations were inspected to  determine the shape of the 

size distributions. Histograms of crown size, height and stem size were examined, and because of 

the intercorrelation of these measurements (see last section) the shape of the distributions were 

similar. A lognormal distribution of tree size describes most of the sample populations. The dis- 

tributions were right-skewed and a log transform of the data produced a normal looking distribu- 

tion (Fig. 5). Therefore, a lognormal distribution will be used in testing the canopy model, with 

the parameter C V ( R 2 )  (coefficient of variation of the average squared crown radius) derived from 
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5.1.3. Spatial Pattern 

~ ~ 
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Figure 6a shows the tree point locations for Gourma Site 20 as an example of the data set 

used to calculate spatial pattern. The results of second order analysis (Getis 1984, Franklin e t  al. 

1985 and Getis and Franklin 198G) for sample quadrats in the test sites are as follows: 

Gourma Site 20: (n = 895, 280 x 280 m quadrat) There is significant inhibition (at 1% level) 

at 6 t o  7 m distance, and significant (at 5% level) clumping at 30 to 100 m (Figure Gb), but the 

pa””zI*I - -4+---  ~ A A L C  IWI.“ - 1 a - 7  . b*J vnm*lar  .ub..’U., I_*.. 9nJ tho I--- accreaat.inn -oo--o fniinrl _ _  hy his method contradicts the results of the 

quadrat analysis (see below). 

Gourma Site 15: (n = 589, 280 x 280 m quadrat) There is significant (at 1% level) inhibition 

(regular spacing) at less than 5 m distance, and significant (at 5% level) clumping at 20 m and 

100 m. At 25 to 80 m distance (satellite scanner resolution) the Poisson model (or Complete Spa- 

tial Randomness) is adequate (Fig. 7b). 

Sdgou Site 2: Subplot 1: (n = 222, 250 x 250 m quadrat) Inhibition to  8 m, Poisson model ade- 

quate from 9 to 50 m, significant aggregation from GO to  100 m (at 1% level). Subplot 2: 

( n  = 228, 250 x 250 m quadrat) Inhibition to  8 m, Poisson model fits from 10 t o  26 m and 36 t o  

100 m, significant aggregation at 28 to 34 m (at 5% level) (Fig. 8). 

Figure 7a shows the point locations for trees in Gourma Site 15 with a 30 m grid overlain, 

t o  illustrate how counts of trees would vary in Th4-sized pixels. The results of variable sized qua- 

drat analysis (Franklin e t  al. 1985) are shown in Table 5. Gourma Site 20 is fit by a Poisson 

model for quadrats of size 20 to 35 m, but not 40 m. This is partly a function of decreased sam- 

ple size. Gourma Site 15 is fit by a Poisson model for quadrats of size 20 t o  50 m, except that  

counts in 30 m quadrats differ significantly from Poisson. Se‘gou Site 2 (Subplot 1) is fit by a 

Poisson model for quadrats of size 10 to  GO m. It was not possible to  test by this method for 

larger quadrats because of the size of the sample areas. 
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Our conclusion from these preliminary analyses of some of the sample sites is that  a random 

(Poisson) spatial model is adequate at relevant sensor resolution of 20 to  50 m pixels. A t  coarser 

resolution, second order analysis shows the Poisson model to be adequate at distances of 50 to 100 

m in most cases, including the sparser stands (Se'gou Site 2) where our earlier studies show that 

the Poisson model breaks down (Franklin et  al. 1985). 

5.1.4. Accuracy 

In order to assess the accuracy of the simple canopy model, an independent measure of tree 

size and density for the sites is needed. Table 6 shows estimates of tree size and density based of 

field and photogrammetric sampling. 
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6.1. Anticipated Problems 

We have discussed the strengths of the canopy modeling approach, and explained why we 

think i t  will be successful. Now we would like to  discuss its weaknesses, the problems we antici- 

pate, and how we will address them. 

(1) Characterization of component signatures may be a problem, particularly background signa- 

ture, which the model is sensative to, and which is highly variable in this region. Image 

stratification wiii heip reduce thia piobleiii - Zackgrcucd sigzztnrs C I I ?  he gssigned Pmpiri- 

cdly within strata. In other words, there may be two strata of the same woodland density 

class, but with different background signatures. 

Transmission of light through the canopy may not be negligible, particularly in Sahelian 

Acacia  woodland (S. Prince, personal communication, personal observation). This can be 

addressed by adding a transmissivity correction derived empirically from field measure- 

ments, the literature, calculated from another model of tree reflectance (Kimes 1986), or cal- 

culated from this model, as Li and Strahler (1985) did. Also, spectral bands on transforms 

can be chosen that de-emphasize transmissivity. Likely candidates are visible bands or 

brightness transforms - the canopy transmits more near-infrared that visible light. 

(2) 

(3) The highly variable phenology of the herbaceous (understory) and tree layer may make i t  

dificult t o  apply this model over large areas, or on a repetitive basis as a monitoring tech- 

nique. Greening up of grasses and leafing out of trees can occur locally (in time or space) in 

response to rainfall events. This is more of a problem in the Sahelian zone. Also in the 

Sahelian zone, although the leafing of trees lags behind greening of grasses for most species 

or vegetation types (trees remain green for at least part of the dry season) there is overlap, 

and particularly in the inundation zones where tree cover is densest, and signature discrimi- 

nation between trees and background may be difficult. This can be addressed in the second 

year when multi-date imagery can be used for signature definition, as well as stratification. 
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(4) Most of the Sahelian zone has extremely low woody cover. An important question will be 

what the lower density limits of the model are - when does the tree signal get lost in the 

noise of background variation? Trees can be identified of high resolution air photos at very 

low density (2-3%), but can they in satellite imagery, using the model? 

(5) Signature and parameter extension - How generalizable are the parameters of the model in 

this environment? Can the same shape, size distribution and pattern parameters for trees be 

extrapolated to  other stands in the same strata, and over how great a biogeographic range? 

At what spatial scale does an atmospheric variation affect the accuracy of the model? If the 

~zlnrie! paramet,ers are very site-specific: then its inversion is theoretically interesting, but not 

very practically applicable. This will be addressed in the second year, when the model will 

be tested in new sites outside of the training sites. 

6.2. Discussion 

By modifying and extending an invertible canopy reflectance model to tropical savanna, we 

anticipate the following results: 

(1) Through exploration of the reflectance model, an improved understanding of the interaction 

between land surface, radiation, and sensor, particularly the effects of scale-dependent patr 

terns and architecture of the objects in the scene. 

(2) Through application of the model using Landsat imagery, an improved ability to  extract 

information on biophysical parameters of the land from remotely sensed data. 

(4) Through field measurements required for modeling, cooperation with ongoing intensive field 

investigations, and by applying remotely sensed data as an additional measurement tool, an 

improved understanding of the structure, distribution and dynamics of the savanna ecosys- 

tem. 

This last point has implications at both regional and global scales. An increase in the fundamen- 

tal knowledge of the factors underlying vegetation distribution will provide basic input for plan- 

ning at a regional level in an area tha t  is under extreme human population pressure. Also this 
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study will provide information presently lacking on the temporal and spatial dynamics of savanna 

ecosystems for input into global ecological and climatological models. We anticipate that  through 

functionally relating physiognomic and physiographic pattern on the landscape to image spatial 

and temporal pattern, a previously underexploited layer of data can be added to  the process of 

information extraction from multiresolution, multitemporal, and multispectral remotely sensed 

data. 
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A. nilotica 30 8.9l (4.3) 4.9 (1.8) 1 .g3 (1.6) 
A. nilotica 71 10.4l (5.7) 5.2 (1.4) 3.03 (2.4) 
A. nilotica 75 10.4l (5.7) 5.3 (1.4) 3 .53 (3.4) 
A. seyal 45 14.5l (8.1) 4.6 (2.0) 
A. seyal 114 8.5l (1.9) 5.2 (0.9) 2.83 (2.0) 
A. seyal 125 4.9l (2.8) 2.i3 (1.8) 
B. aegyptica 20 8.5" (4.8) 2.7 (1.0) 1 .03 (1.2) 
A. albida 62 21.32 (7.3) 12.2 (2.8) 4.8' (1.7) 
K paradoxa 65 14.22 (5.8) 7.7 (2.2) 3.7' (1.1) 

1 TABLE 1 

11. 
I. 
I. 
11. 
I. 

111. 
I. 
rv. 
w. 

Notes: 
Stem Size: 1 - basal circumference 

2 - diameter at breast height 
a - from a different population 
3 - from estimate of crown surface area 
4 - crown diameter measured 

11. Cisse' 1980b 
III. Hiernaux 1985, unpublished data 
W. this study 

Crown Radius: 

Source: I. Hiernaux et al. 1984 

TABLE 2 
Species n h h / R  R 2  uR2 CV(R2)  

A. nilotica 30 3.0 1.58 3.8 2.6 1.46 
A. nilotica 71 2.2 0.73 11.9 15.0 0.80 
A. nilotica 75 1.8 0.50 11.9 15.0 0.79 

A. seyal 125 4.5 3.3 1.35 
B. aegyptica 20 1.7l 1.70 1.1 1.4 0.74 
A. nlbida 62 7.42 1.54 34.8 17.3 1.40 

A. seyal 114 2.4 0.86 7.6 3.8 2.00 

~ 

V. paradoxa 65 4.03 1.10 15.3 9.5 l.GO I 
Notes: 
h 
shape (H - R )  
R 2  
C V ( R 2 )  
1 - height to  lowest branched measured, = 0.5 m 
2 - height to widest part of crown measured, = 8.7 (1.9) m. 
3 - height t o  widest part of crown measured, = 5.1 (1.4) m. 

(height t o  bottom of canopy) calculated for idealized semisphere 

is the average squared crown radius 
is the coefficient of variation of R 2  
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TABLE 3 
~ 

r/R 
0.50 
0.55 
0.60 
0.65 
0.70 
0.75 
0.80 
0.85 
0.90 
0.95 
1 .oo 
1.05 
1.10 
1.15 
1.20 
1.25 
1.30 
1.35 
1.40 
1.45 
1.50 
1.55 
1.60 
1.65 
1.70 
1.75 

Gourma 
e = 38.7 

r 
4.37 
4.45 
4.53 
4.61 
4.69 
4.76 
4.84 
4.91 
4.99 
5.06 
5.14 
5.31 
5.28 
5.35 
5.42 
5.49 
5.56 
5.63 
5.70 
5.76 
5.83 
5.89 
5.95 
6.01 
6.07 
6.13 

Segou 
e = 50.8 

r 
5.26 
5.37 
5.49 
5.60 
5.71 
5.82 
5.93 
6.04 
6.14 
6.24 
6.34 
6.44 
6.53 
6.62 
6.70 
6.78 
6.86 
(3.93 
7 .OO 
7 .OG 
7.11 
7.15 
7.18 
7.19 
7.19 
7.19 

-42- 



Annual Report NASA Award NAGW-788 

TABLE 4 
Relationships Among Tree Measurements 

Predict Crown Size (R or S or CWl from Stem Size fDBH or C’I 
Species n Regression Equation R2 

A. nilot ica 30 logs 1.13 lOgC - 1.34 .88* 
A. nilot ica 75 logs = 1.12 lOgC - 0.05 .59 
A. seya l  114 logs = 0.81 logC + 0.15 .54 
A. seya l  125 logs = 1.24 lOgC - 0.09 .73 
A. albida 63 CW = 0.35 DBH -+- 2.20 .59 
V. paradoxa  65 CW = 0.4 DBH + 1.33 .58 

Predict Crown Size (R or S or CW) from Height (H) 
A. nilot ica 30 logH = 0.49 logs + 0.41 .65* 
A. nilot ica 75 logH = 0.23 logs + 0.88 .43 
A. seya l  114 logs = 2.07 logs - 0.35 .47 
B. aegypt ica 20 S = 3.9 H - 7.15 .80* 
A. albida 62 H = 0.63 CW + 6.16 .55 
V. paradoxa  65 H = 0.53 CW + 4.0 .37 

A. nilot ica 30 logH 0.64 logC - 0.52 .77 
A. nilot ica 75 logH = 0.34 logC + 0.51 .43 

Predict Height (H) from Stem Size (DBH or C) 

A. seya l  114 logH = 0.7 logC - 1.13 .9B 
A. seyal  125 logH = 0.24 logC + 0.89 .42 
B. aegypt ica 20 logH = 0.46 logC - 0.49 .71* 
A. albida 62 H = 0.33 DBH + 5.5 .51 
V. paradoza  65 H = 0.31 DBH + 3.71 .70 

* calculated from samples stratified by size class 
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TABLE 5 
Q.uadrat Analysis: Fit to Poisson Distribution 
Quadrat n n 

Size quadrats points mean x2 df 
Gourma Site 15 (A. nilotica 1 

10 784 587 0.7 4.7 3 
20 196 587 3 .O 4.7 9 
25 121 567 4.7 8.0 12 
30 81 547 6.8 34.1* 13 
35 64 587 9.2 9.1 18 
40 49 587 12.0 20.9 24 
50 25 466 18.6 10 27 

Gourma Site 20 (A. seyal  ) 
20 182 838 4.6 10.0 10 
25 121 877 7.2 24.8 18 
30 81 850 10.5 25.9 19 
35 56 780 13.9 15 28 
4u 42 7 5 i  18.0 ai* 30 

10 G25 223 0.36 3.1 0 
20 144 212 1.47 0.3 4 
30 64 213 3.3 3.9 7 
40 36 213 5.9 5.8 14 
50 25 223 8.9 6.4 17 
60 16 213 13.1 11.3 26 

Segou Site 2 (subplot 1) ( K  paradoza ) 

* significantly different at .05 level 

-44 



_____ 

Annual Report NASA Award NAGW-788 

I TABLE 6 
Actual Tree Size and Density for Test Sites 
Site Percent Density 

Cover Area (ha) (trees/ha) R2(*) 

Gourma 15: field 31.0 (1 km) 

Gourma 20: field 59.4 (1 km) 

photo 22.6 9.80 
photo 26.5 7.84 75.1 11.2 

photo 38.8 9.80 
photo 35.0 7.84 114.2 9.75 

Seaou 1: field 13.0 4.52l 27.6 16.26 
Segou 2: field 18.9 3.48l 46.4 12.84 

photo 26.8 25.00 41.4 20.63 
Segou 3: field 21.2 3.14l 39.8 16.95 

1 4.52l 15.2 30.23 Segou 4: field 14.5 

Notes: 
* - Calculated from cover area divided by number of trees 

1 - total area for four subplots 
(see Table 2 for measured R2) 
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Fig. 2. 

I C 

I I 

B r i g h t n e s s  

Idealized plot of brightness-greenness spectral space with com- 
ponent signatures and diagrammatic coverage trajectory. 
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Figure 5. Histograms of size distributions for Acacia nilotica and Acacia albida. The quantile-quantile (Q-Q) 
plots represent the data plotted against corresponding quantiles of the normal distribution (units are 
standard deviations). If the points fall in a straight line, they are normally distributed. 
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Figure 6. a) Point locations of trees, Gourma Site 20. b) Cumulative frequency of observed interpoint dis- 
tances (Li [ d ] ) .  The diagonal is the expected frequency for a Poisson distribution, and the lines sur- 
rounding it are the .05 significance level. 
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Figure 7. a) Point locations of trees, Gourma Site 15 with grid of 30 m quadrats overlain. b) Cumulative fre- 
quency of observed interpoint distances (Li [ d ] ) .  The diagonal is the expected frequency for a Pois- 
son distribution, and the lines surrounding i t  are the .05 significance level. 
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Figure 8. a) Point locations of trees, Se'gou Site 2 (subplot 2). b) Cumulative frequency of observed interpoint 
distances (L; ( d ] ) .  The diagonal is the expected frequency for a Poisson distribution, and the lines 
surrounding it are the .05 significance level. 
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